

ISEG - MISSÃO

- ➤ a Criação,
- > Transmissão e
- ➤ Valorização Social e Económica

do conhecimento e da cultura

nos domínios das ciências económicas, financeiras e empresariais

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

ISEG - VALORES

- > Diversidade e pluralidade
- Ética
- > Responsabilidade social
- Liberdade intelectual e científica
- > Avaliação e melhoria contínua

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) – 2017/18

ISEG - VISÃO

- > Desenvolvimento económico e social do país
- > Avanço da fronteira do conhecimento e
- > Afirmação internacional

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Aulas

Grupos – trabalhos!

Avaliação

SIMO/MQDEE

- > AC Trabalhos & Aula 70%
- ➤ Teste escrito 30%
- Consulta 2 folhas A4

Programa

Cap. 1 – Técnicas de Resolução em Otimização Combinatória

Relaxações

Resolução exata de problemas

Algoritmo de branch-and-bound

Algoritmo de planos de corte

Utilização de software

Cap. 2 - Problemas de Otimização Combinatória - Roteamento

Problemas de roteamento nos nodos

Problemas de roteamento nos arcos

Utilização de Software

Cap. 3 – Modelos de Investigação Operacional em Simulação

Simulação e otimização

Geração de instâncias de problemas de otimização

Utilização de software de simulação – SIMUL8

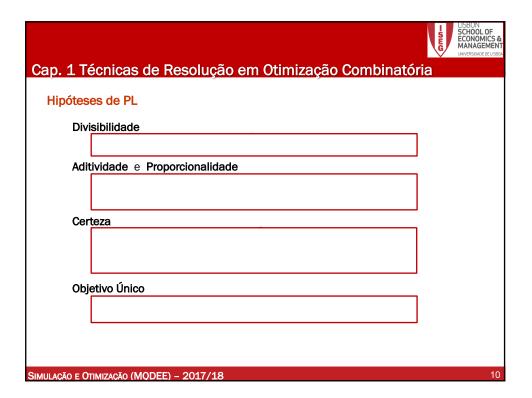
SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Bibliografia

- Corberán, Á. & G. Laporte (2014); Arc Routing Problems, Methods, and Application; MOS-SIAM
 Series on Optimization, Philadelphia.
- Drexl, M. (2012); Rich Vehicle Routing in Theory and Practice, Logistics Research, Volume 5, pp. 47-63 (DOI: 10.1007/s12159-012-0080-2)
- Hillier, F.S. & G.J. Lieberman (2010), Introduction to Operations Research, 9th ed., McGraw-Hill,
- Mourão, M.C. & L.S. Pinto (2017); An updated annotated bibliography on arc routing problems,
 Networks, accepted
- Shalliker, J. & A. Suleman (2012); Guia de Simulação Discreta por Computador usando SIMUL8.
 Heybrook Associates & ISCTE IUL Instituto Universitário de Lisboa.
- Toth, P. & D. Vigo (2014); Vehicle Routing Problems, Methods, and Application; 2nd ed., MOS-SIAM Series on Optimization, Philadelphia.
- Wolsey, L. (1998), *Integer Programming*, John Wiley & Sons, New York.

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18





Cap. 1 Técnicas de Resolução em Otimização Combinatória

Programação Linear Inteira (PLI)

Um **Problema de Programação Linear Inteira (PLI)** é um PL em que todas (**PLI puro**) ou parte (**PLI misto**) das variáveis só podem assumir valores inteiros.

Variáveis inteiras - para representar quantidades indivisíveis

Variáveis binárias - para decisões Sim/Não - Programação Binária

Problemas de Otimização Combinatória – a solução ótima é um subconjunto de um conjunto finito.

Problemas que poderiam ser resolvidos por enumeração! Crescimento exponencial!

Exemplos: Afetação (n!); Mochila (2^n) ; Cobertura (2^n) ; Caixeiro Viajante (n-1)!; etc.

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Cap. 1 Técnicas de Resolução em Otimização Combinatória

Enumeração -> só se conseguem resolver instâncias de pequenas dimensões!

n	log n	n ^{0.5}	n²	2 ⁿ	n!
10	3.32	3.16	10 ²	1.02×10 ³	3.60×10 ⁶
100	6.64	10.00	104	1.27×10 ³⁰	9.33×10 ¹⁵⁷
1000	9.97	31.62	10 ⁶	1.07×10 ³⁰¹	4.02×10^{2567}

> Formulações Minorantes Majorantes

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

12

Cap. 1 Técnicas de Resolução em Otimização Combinatória

Exemplos de Aplicações

- ✓ Análise de investimentos
- ✓ Seleção de projetos
- ✓ Localização de equipamentos (fábricas, hangares, carros de apoio) ou de equipas de emergência e de apoio técnico
- ✓ Distribuição; Rotas; Carregamento
- ✓ Desenho de redes (comunicações)
- ✓ Escalonamento de pessoal, de veículos e de equipamentos

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Resolução

Algoritmos Exatos:

branch-and-bound (Land, Doig, 1960) (Little, Murty, Sweeney, Karel, 1963) **planos de corte** (Gomory, 1960)

Métodos Não Exatos:

Técnicas de arredondamento

Heurísticas

básicas; construtivas; pesquisa local; metaheurísticas; inspiração social: pesquisa tabu; *ant colonies* inspiração física: *simulated annealing* inspiração biológica: genéticos; redes neuronais

Relaxações; Métodos de Subgradiente

Software:

Excel/Solver & OpenSolver

Visual Basic

CPLEX; LINGO; LINDO

SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2017/18

15

OTIMIZAÇÃO INTEIRA

LISBON SCHOOL OF ECONOMICS & MANAGEMENT UNIVERSIDADE DE LISBOA

Resolução

- ightharpoonup PLI de Minimização: $Z^* = Min\{cx: x \in P \cap Y, Y \subseteq \mathbb{Z}^n\}$
 - ✓ Majorantes Heurísticas
- $\underline{Z} \le Z^* \le \overline{Z}$
- ✓ Minorantes!
- Como avaliar a qualidade de uma SA ?
- Minorantes (limites duais)
 - Relaxação
 - ✓ Ideia: substituir um problema difícil de resolver por um mais simples e cujo valor ótimo não exceda Z*
 - √ "Aumentar" a RA; Substituir a FO por outra função que nunca exceda a FO inicial

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Relaxações

Def.: Um problema (PR): $z_R = Min\{f(\mathbf{x}) : \mathbf{x} \in P \subseteq \mathbb{R}^n\}$

(PLR)

é uma Relaxação de um (PI) de minimização:

 $z = Min \{ \mathbf{c}(\mathbf{x}) : \mathbf{x} \in X \subseteq \mathbb{R}^n \}$

(PLI)

se: $P \supseteq X \land f(\mathbf{x}) \le c(\mathbf{x}), \forall \mathbf{x} \in X$

Teor.: Se (PR) é relaxação de (PI), então: $z_R \leq z$

Como construir relaxações "interessantes" ?

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

OTIMIZAÇÃO INTEIRA

Relaxações

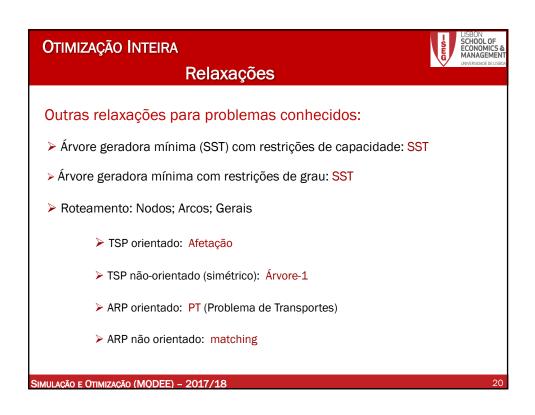
- > A relaxação linear de um PLI é o problema de PL que resulta do PLI por omissão das restrições de integralidade.
- ➤ Dado um PLI de minimização: $z = Min \{ \mathbf{c} \mathbf{x} : \mathbf{x} \in X \cap \mathbb{Z}^n \}$
 - a Relaxação Linear (PLR) é: $z_{RL} = \min \{ \mathbf{c} \mathbf{x} : \mathbf{x} \in X \}$
 - ✓ É relaxação pois: $X \cap \mathbb{Z}^n \subseteq X$ e a FO não se altera!
 - ✓ Logo: $z_{RL} \le z$

Teor.:

- (i) Se a relaxação PLR é impossível, o problema inicial PLI é impossível;
- (ii) Seja \mathbf{x}^* uma SO de PLR. Se $\mathbf{x}^* \in \mathbb{Z}^n$ então, \mathbf{x}^* é SO de PLI.

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

OTIMIZAÇÃO INTEIRA
Relaxações
Outras relaxações para problemas conhecidos: > Árvore geradora mínima (SST) com restrições de capacidade: > Árvore geradora mínima com restrições de grau: > Roteamento: Nodos; Arcos; Gerais > TSP orientado: > TSP não-orientado (simétrico): > ARP orientado: > ARP não orientado:
SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2017/18



Considere-se o (PLI)

$$Z^* = Min \ Z = x_1 - 2x_2$$
 s.a:
$$\begin{cases} x_1 - x_2 \ge 0 & \text{(R1)} \\ x_1 + 2x_2 \le 5 \\ x_1 & \le 3 \\ x_1, x_2 \in \mathbb{Z}_0^+ \end{cases}$$

SOLVER

- Resolver o (PLI)
- Resolver a relaxação linear (PLR)
- Resolver o (PLI) sem uma das restrições funcionais (R1)

Exemplo

Exemplo

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

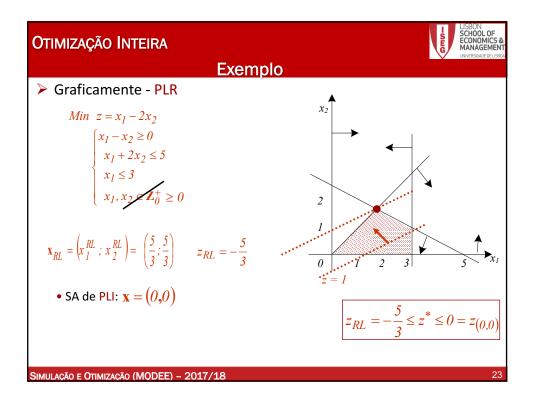
04

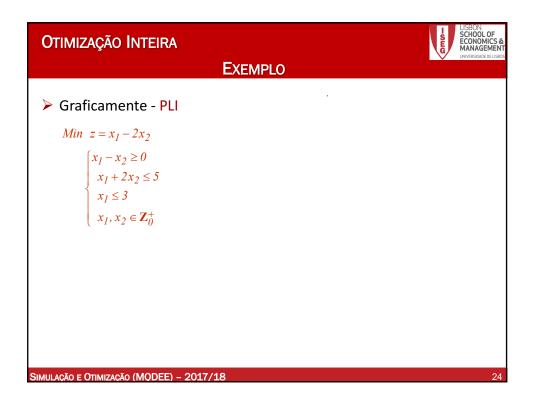
OTIMIZAÇÃO INTEIRA

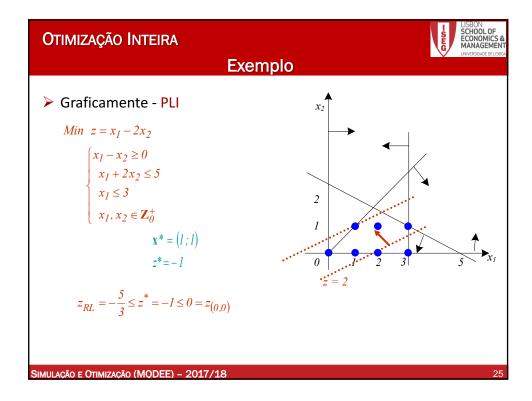
➤ Graficamente - PLR

$$\begin{aligned} & \textit{Min} & \ z = x_1 - 2x_2 \\ & \begin{cases} x_1 - x_2 \ge 0 \\ x_1 + 2x_2 \le 5 \end{cases} \\ & x_1 \le 3 \\ & x_1, x_2 \ge L_0^+ \ge 0 \end{aligned}$$

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18







OTIMIZAÇÃO INTEIRA Exemplo Figure 1º restrição Min $z = x_1 - 2x_2$ $\frac{x_1 \quad x_2 \ge 0}{x_1 + 2x_2 \le 5}$ $x_1 \le 3$ $x_1, x_2 \in \mathbf{Z}_0^+$ SIMULAÇÃO E OTIMIZAÇÃO (MODEE) - 2017/18

LISBON SCHOOL OF ECONOMICS & MANAGEMENT LINIVERSIDADE DE LISBOA

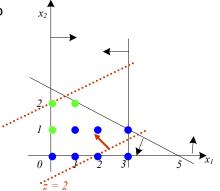
• Graficamente – PLI sem 1ª restrição

Exemplo

$$Min \ z = x_1 - 2x_2$$

$$\begin{cases} x_1 & x_2 \ge 0 \\ x_1 + 2x_2 \le 5 \\ x_1 \le 3 \\ x_1, x_2 \in \mathbf{Z}_0^+ \end{cases}$$

$$\widetilde{\mathbf{x}} = (0; 2)$$



SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

07

OTIMIZAÇÃO ÎNTEIRA

Relaxações

- Dualidade obtenção de minorantes!
- ➤ O valor de qualquer SA dual é um minorante para o valor ótimo do PLI (de minimização)

Teor.: Dualidade Fraca: $w(\mathbf{u}) \le z(\mathbf{x}), \ \forall \mathbf{x} \in X, \ \forall \mathbf{u} \in U$

Teor.: Dualidade Forte:

dado um par de problemas duais, se um tem SO, então o outro também tem e os valores óptimos dos dois problemas coincidem $w^* = z^*$

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

Exemplo

> Retome-se o PLI

$$\begin{array}{c|c} \textit{Min} & z = x_1 - 2x_2 \\ \hline & x_1 - x_2 \ge 0 \\ & x_1 + 2x_2 \le 5 \\ & x_1 \le 3 \\ & x_1, x_2 \in \mathbf{Z}_0^+ \end{array} \quad X \quad \mathbf{x} \in X$$

> Define-se a Relaxação Lagrangeana como sendo:

$$\mathsf{PLI}(\mathbf{u}): z(u) = \min_{x \in X} \{x_1 - 2x_2 + u(0 - x_1 + x_2)\}\$$

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

. .

OTIMIZAÇÃO INTEIRA

Exemplo

> Retome-se o PLI

$$\begin{array}{c|c} \textit{Min } z = x_1 - 2x_2 \\ \hline & \begin{cases} x_1 - x_2 \ge 0 \\ x_1 + 2x_2 \le 5 \\ x_1 \le 3 \\ x_1, x_2 \in \mathbf{Z}_0^+ \end{cases} X \qquad \mathbf{x} \in X \end{array}$$

> Define-se a função Dual Lagrangeana como sendo:

PLI(**u**):
$$z(u) = \min_{x \in X} \{x_1 - 2x_2 + u(0 - x_1 + x_2)\} =$$

= $\min_{x \in X} \{x_1(1 - u) + x_2(-2 + u)\}$

SIMULAÇÃO E OTIMIZAÇÃO (MQDEE) - 2017/18

3በ